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Vision algorithms must deliver information with
which to make practical decisions regarding in-
terpreting the data present in an image.

Probability is the only self-consistent computa-
tional framework for data analysis.

Probability theory must form the basis of all
statistical analysis processes.

The most direct form of information regarding
an hypothesis is the posterior ( often condi-
tional) probability.

The most effective/robust algorithms will be
those that match most closely the statistical
properties of the data.

There are several common models for statisti-
cal data analysis all of which can be related at



some stage to the principle of maximum likeli-
hood.

e An algorithm which takes correct account of all
of the data will yield an optimal result.



e P(A) probability of event A.
o P(A) =1 — P(A) probability of non-event A.

e P(AB) probability of simultaneous events A and
B.

e P(A, B) joint probability of events A or B.
e P(A|B) probability of event A given event B.

e P(A|BC) probability of event A given events B
and C.

e P(A|B,C) probability of event A given events
B or C.

e P(A = B) probability of equivalence of events
A and B.

Warning: EXxpressions relating probabilities do not
reveal the assumptions with which these results
were derived.



Bayes T heorem.

The basic foundation of probability theory follows
from the following intuitive definition of conditional
probability.

P(AB) = P(A|B)P(B)

In this definition events A and B are simultaneous
an have no (explicit) temporal order we can write

P(AB) = P(BA) = P(B|A)P(A)

This leads us to a common form of Bayes Theory,
the equation:

P(B|A) = P(A|B)P(B)/P(A)

which allows us to compute the probability of one
event in terms of observations of another and knowl-
edge of joint distributions.



Maximum Likelihood

Starting with Bayes theorem we can extend the
joint probability equation to three and more events

P(ABC) = P(A|BC)P(BC)

P(ABC) = P(A|BC)P(B|C)P(C)

For n events with probabilities computed assuming
a particular interpretation of the data (for example
a model Y)

P(XoX1X0..Xn|Y)P(Y) =

P(Xo|X1X5.. XnY)P(X1|X2..X0Y ). P(Xn|Y)P(Y)



e Maximum Likelihood statistics involves the iden-
tification of the event Y which maximises such
a probability. In the absence of any other in-
formation the prior probability P(Y') is assumed
to be constant for all Y.

e Even if the events were simple binary variables
there are clearly an exponential number of pos-
sible values for even the first term in P(XY)
requiring a prohibitive amount of data storage.

e In the case where each observed event is inde-
pendent of all others we can write.

P(Xn|YV) = P(Xo|Y)P(X1|Y)P(X2|V)...P(Xn|V)



If we make the assumption that the event X; is bi-
nary with probability P(X;) then we can construct
the probability of observing a particular binary vec-
tor X as

P(X) = M;P(X)NiP(X;)%i
or
P(X) = M;(P(X;)%i(1 — P(X;))1—%)

The log likelihood function is therefore

log(P) = ZXilog(P(Xi)) + (1 — X;)log(1 — P(X;))

This quantity can be or directly evaluated in order
to form a statistical decision regarding the likely
generator of X. This is therefore a useful equation
for methods of statistical pattern recognition.

eqg:
X = (0,1,0,...,1)
and

P(X) = (0.1,0.2.0.05,...,0.9)



Dealing with Data Distributions.

e T he generation process for a histogram, mak-
ing an entry at random according to a fixed
probability, is described by the Poisson distri-
bution.

The probability of observing a particular num-
ber of entries h; for an expected probability of
p; 1S given by

h;

p.
P(h;) = exp(—p;)=
h;!

e For large expected numbers of entries this dis-
tribution approximates a Gaussian with

o= D;

e [ he limit of a frequency distribution for an infi-
nite number of samples and bins of infinitesimal
width defines a probability density distribution.



These two facts allow us to see that the standard
X2 statistic is appropriate for comparing two fre-
quency distributions h; and j; for large measures.

—2 log(P) = x°= Z(hi — §i)?/(hi + 5i)

e:

e—log(P) — I_Iie_Xz'Q/Q



Dealing with Functions.

If we now define the variation of the observed mea-
surements X; about the generating function with
some random error, the probability

P(Xo|X1X5..XnaYp)

will be equivalent to P(XglaYp).

Choosing Gaussian random errors with a standard
deviation of o; gives

—(Xi — f(a, YD),
207;2

where A; is a normalization constant. We can now

construct the maximum likelihood function

—(X; — f(a,Y;))?

2
207:

which leads to the x2 definition of log likelihood

P(X;) = Azexp(

P(X) = I’I,L-Aiexp( )

_ . )2
log(P) = 71 Z (X ];(‘%)) ~+ const

g,



e T his expression can be maximized as a function
of the parameters a and this process is generally
called a least squares fit.

e L east squares fits are susceptible to fliers (out-
liers).

e [ he correct way to deal with these leads to the
methods of robust statistics.



For locally linear fit functions f we can approximate
the variation in a X2 metric about the minimum
value as a quadratic. We will examine the two
dimensional case first, for example:

z=ua+ bz + cy + doy + ex® + fy?

This can be written as
Xzzxg—l—AXTC;lAX with AX = (z—x0,y—Y0)

where C; 1 is defined as the inverse covariance ma-
trix

u v
w S

c;l =

Comparing with the above quadratic equation we
get

X2 = X% + 2%u + yrw + ryv + sy2

where

a=x8,b=O,c=0,d='w—|—'v,e=u,f=s

Notice that the b and c¢ coefficients are zero as
required if the x2 is at the minimum.



£ o

tation as previously.

N (X, — f(yi,a))2
Z( f(2y ))

7 g;

We can compute the first and second order deriva-
tives as follows:

0 X (X;— f(yi,a)) Of
L=Z 2y

8a;fn, i O-’L 80;7’1,
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The second term in this equation is expected to be
negligible giving
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As these derivatives must correspond to the first
coefficients in a polynomial (Taylor) expansion of
the x2 function then,

C=a1

And the expected change in X2 for a small change
in model parameters can be written as

AX2 = AalaAa



In order to use a piece of information f(X) derived
from a set of measures X we must have information
regarding its likely variation.

If X has been obtained using a measurement sys-
tem then we must be able to quantify measurement
accuracy.

Then
AfA(X)=Vfloxvy

example 1: the Poisson distribution s

t =+/s
then we can show, using a simplified form of error

propagation for one parameter, that the expected
variance on t is given by

At = @As
0s
-1
2
Thus the distribution of the square-root of a ran-
dom variable drawn from a Poisson distribution
with large mean will be constant.
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Using rectified images, the distance, Z between the
feature and the camera plane can be found with the
equation:

A L

1 — T2

where:

f is the focal length of the lenses

I is the inter-occular seperation

x1 and x» are positions of the features on the epipo-
lars

We can determine the sensitivity of Z with changes

in 1 and x> thus,

2 2
Z Z
AZ? = (5—Aa:1> + (;—A@)

dx1 1
where,
/ I / 1
5— = — ! 5 and J = / 5
0x1 (r1 — x2) oz (z1— x2)

Ax is the feature position error in the image and
can be assumed to be equal in each image, soO

Ax1 = Axr, = Ax



Solving for AZ yields the result,

2FIN 272N
N7 = \/_f < or w.r.t. Z, AZ=\/_ a

 (z1 — 10)? fI




example 3: Medical Image Co-registration.

The work of West et al. illustrates one of only a
few examples of a co-ordinated attempt to com-
pare algorithms.

The work involved getting numerous groups to co-
register test data sets while a central cite collated
the results.

While this is an important piece of work it has two
key failings;

e [ he choice of data sets is specific and finite.

e Results cannot be extended to other data sets.

In this case the use of covariance matricies may
have allowed the validation and reliability of algo-
rithms capable of prediciting their own accuracy on
any data.



Part 2: Image Processing Stability.

N. A. Thacker.

e [ he Importance of Stability.

e Error Propagation.

e Monte-Carlo Techniques.

e Image Arithmetic.

e Linear Filters.

e Histogram Equalisation.



In simple image processing the requirements of an
image processing algorithm may be purely to en-
hance the image for viewing.

But; the aim of advanced image processing to pro-
duce an image that makes certain information ex-
plicit in the resulting image values for automated
data extraction.

eg. edge strength maps.

Generally, high values located over features of in-
terest. The process which determines a good al-
gorithm is its behaviour in the presence of noise,
in particular does the resulting image give results
which really can be interpreted purely on the basis
of output value.

ie: is a high value genuine or just a product of the
propagated noise.

In this lecture we will cover two ways of assessing
algorithms: Error Propagation and Monte-Carlo
techniques.



Error Propagation.

General Approach for Error Propagation (Recap).
AfA(X)=Vflexvy

where V f is a vector of derivatives

of of Of
vf — ( ? Y 7"")
0X1 0Xo 0X3
and Af(X) is the standard deviation on the com-
puted measure

If we apply this to image processing assuming that
images have uniform random noise then we can
simplify this expression to

Ofz
Afa?y(l) — Zafgm( / Y

nm (9[ nm

)2

ie: the contribution to the output from each in-
dependent variance involved in the calculation is
added in quadrature.



Differential propagation techniques are inappropri-
ate when:

e Input errors are large compared to the range of
linearity of the function.

e Input distribution is non-Gaussian.

The most general technique for algorithm analysis
which is still applicable under these circumstances
IS known as the Monte-Carlo technique.

This techniques takes values from the expected in-
put distribution and accumulates the statistical re-
sponse of the output distribution.

The technique requires simply a method of gen-
erating random numbers from the expected input
distribution and the algorithm itself.



Image Arithmetic.

We can drop the xy subscript as it is not needed.

Addition:
O =1L + I
AO? = a% —+ ag
Division:
O =1/ I
2 2 2
> _ 0] ITo5
AT =p t
2 2
Multiplication:
O = 1.1

AO? = 1507 + Iio5



Square-root:

Logarithm:

Polynomial Term:



Square-root of Sum of Squares:

0O = 12 + I3

2 2 > 2
Ifo1 + 1505
7 + I3

Notice that some of these results are independent
of the image data. Thus these algorithms preserve
uniform random noise in the output image.

Such techniques form the basis of the most useful
building blocks for image processing algorithms.

Some however, (most notably multiplication and
division) produce a result which is data depen-
dent, thus each output pixel will have different
noise characteristics. This complicates the process
of algorithmic design.



Linear Filters.

For Linear Filters we initially have to re-introduce
the spatial subscript for the input and output im-
ages I and O.

Oay = ) hnmlztnytm
nm

where hn,m are the linear co-efficients.

Error propagation gives:
2 2
202, = 3 (humOutnytm)
nm
for uniform errors this can be rewritten as

AOgy = UQZ(hnm)Q = K o?
nm
eg: h = (—1,0,1) gives Delta0? = 2052

Thus linear filters produce outputs that have uni-
form errors.



Unlike image arithmetic, although the errors are
unform they are no-longer independent because the
same data is used in the calculation of the output
image pixels. Thus care has to be taken when
applying further processing.

For the case of applying a second linear filter this
iIs not a problem as all sequences of linear filter
operations can be replaced by a combined linear
filter operation, thus the original derivation holds.



HAISLOgralil quadiisationl.

For this algorithm we have a small problem as the
differential of the processing process is not well
defined.

If however we take the limiting case of the algo-
rithm for a continuous signal then the output image
can be defined as:

Oy = /O " /O  fdI

where f is the frequency distribution of the grey
levels (ie: the histogram).

This can now be differentiated giving
00y
Ol y
ie: the derivative is proportional to the frequency of

occurrence of grey level value Iyy and the expected
variance is:

= K fr,

A0z, = K oz ff



Clearly this will not be uniform across the image,
nor would it be in the quantized definition of the
algorithm.

Thus although histogram equalisation is a popular
process for displaying results (to make better use
of the dynamic range available in the display) it
should generally be avoided as part of a Machine
Vision algorithm.



Edge detection is a combination of operations and
the simplest approach to testing is likely to be
Monte-Carlo.

Canny was designed to combine optimal noise sup-
pression with location accuracy, but does this ac-
count for its stability?

The sequence of processing involves;

e convolution with the noise filter
(eg: ® Gaussian)

e calculation of spatial derivatives
(eg: ® (-1, 0, 1))

e calculation of edge strength
(eg: /(V2 + V2))

e thresholding and peak finding

The final stage will be reliable provided that we
have stability after the first three image processing
steps.



Generally, when locating features, we are interested
in a limited set of performance characteristics.

e Position and orientation accuracy

e Detection reliability

e False Detection rate

The first of these can be performed using a Monte-
Carlo repeatability experiment.

The last two require a gold standard against which
to make a comparison.

In addition, most feature detection algorithms have
a sensitivity threshold (which corresponds to the
probability level of the null hypothesis). The best
value will be data dependent.

The way to deal with this is to produce curves
which describe the detection and false detection
rates as a function of threshold or even better ROC
curves.



Part 3 : Evaluating Representation.

N. A. Thacker.

Evaluating Algorithms.

Optimal Interpretation Algorithms.

Completeness in Shape Recognition:

Fourier,

Moments and Pairwise Geometric Histograms.

Completeness in Texture recognition:
Wavelets.

Gabor,



If we can define theoretical measures which only
need confirmation on small data sets.

One such measure is the idea of Completeness.

All scene interpretation algorithms fall into a two
stage scheme

e representation

e recognition

For scene interpretation tasks, completeness is the
property that the representation chosen for the al-
gorithm is invertable. ie: it is possible to recon-
struct the original data (in all important respects
including required invariances ) from the represen-
tation parameters.



Further if the recognition stage of the algorithm
can then be shown to probabilistically (Bayes) cor-
rect decisions based on this data then the whole
scheme can be said to be optimal.

This may have to be defined under a restrictive
set of assumptions which define the scope of the
method and may also have temporal dependence.

Ignoring implementation and speed issues, the best
iImage interpretation schemes will be those that are
complete and optimal (with the largest scope of
application).



Fourier Descriptors.

One example of a complete algorithm is the Fourier
descriptor of an object boundary. The existence
of an inverse process for this makes the technique
automatically complete.

However, this simple representation in x and y is
not scale or rotation invariant.

Alternatively, a curve is plotted as tangential orien-
tation against arc length W(s) and converted to a
variable W*(t) which measures the deviation from
circulatiry.

W*(t) = W(Lt/(2n)) + t t = 2ns/L

This periodic contour can then be represented as
a Fourier series.

W) = po + ) Agcos(kt — oy)
k=1



The boundary is now uniquely represented by the
infinite series of Fourier coefficients, A; and ay.

Attempting to introduce rotation invariance to this
by keeping only the amplitude components A; de-
stroys the completeness.

This is a general feature of most invariant algo-
rithms, the process of obtaining the required invari-
ance characteristics introduces representaional am-
biguity.



Appart from Fourier descriptors, the other most
common complex shape descriptor in the literature
iIs Moment Descriptors.

Ignoring for the moment the main difficulties
e pre-processing the image to obtain suitable data

e defining an accurate centroid.

The regular moment of a shape in an M by N binary
image is defined as:

—1N-1

Upq — Z Z P59f(i,7) (1)

7=0 2=0

Where f(x,vy) is the intensity of the pixel (either 1
or 0) at the coordinates (x,y) and p+ ¢ is said to
be the order of the moment.

Measurements are taken relative to the shapes cen-
troid (z,4') to remove translational variability.



The coordinates of the centroid are determined us-
ing the equation above:

j = 10 and j=— (2)

uQ0 uQ0
Relative moments are then calculated using the

equation for central moments which is defined as:

—1N-1

Upg = Z Y G—PG -G, 5) (3)

7=0 =0

The basic moment equations are complete (again
there is an inverse).

We can also compute a set of rotation invariant
moment measures.

My = (upo + up2)



Mo = (ung — ug2)? + 4u?q

Mz = (uzg — 3u12)? + (Bus1 — ug3)?

My = (uzp + u12)? + (u21 + ug3)?

Ms = (u30—3u12)(uzo+u12)((uz0+u12)2—3(u1+ug3)?)

+ (Buo1—ug3) (up1+uo3) (3(uzg+u12)?—(upy +ugp3)?)

Mg = (upg — ug2)((uzp + u12)? — (uo1 + ug3)?)

+4uq1(uzg + 3uio)(unr1 + u©p3)

M7 = (3up1—uo3)(uzo+tu1z)((uzotuin)?—3(ur1+uos)?)

— (u30—3u12) (uo1+u3) (3(uzg+ui2)?—(us1+ugz)?)



We can also recompute the original moment de-
scriptors from the invariant quantities, so the ro-
tational invariant equations are still complete.

However, errors do not propegate well through the
moment calculations and successively higher terms
become increasingly unstable. Thus we are |lim-
ited to the practical number of terms that we can
actually use for recognition.

In practice moment descriptors are not actually
complete.



Unlike the previous two represenatation schemes
PGH’'s have been designed to directly encode local
shape information.

They are robust and do not require prior segmen-
tation of the object from the scene.

They have unlimited scope for arbitrary shape reprsene-
tation and encode the expected errors on shape
description directly so that there are no problems
with error propagation.

PGH’'s encode local orientation and distance infor-
mation between edges detected on an object in a
way that provides rotation and translation invari-
ance.

Scale invariance can be obtained by interpolating
matching responses across a range of scales.



It is not immediately obvious how we might get
from the set of PGH’'s describing an object back
to an unambiguous shape.

If we take the projection of a PGH onto the angle
axis we will obtain a 1D histogram which is the
same for all line fragments appart from a shift due
to the line orientation.

Relative line orientation within the object can be
recovered.

A PGH can be considered as a projection along the
direction of the line through the area of the object
onto a projection axis.

Thus the set of pairwise histograms provides a
complete set of projections for various line orienta-
tions through the object analogous to a 2D image



reconstruction process such as is commonly found
In medical image processing applications.

A reconstruction process can thus be performed
which reconstructs the volume around the object
as a set of edge orientation specific density images.

These can then be combined to regenerate the
original shape.

Finally, recognition can be performed using a sim-
ple nearest neighbour strategy based on the his-
tograms which is gauranteed to be optimal



Gabor Filters.
We know that the most compact function in both

the spatial and frequency domain is the Gaussian.
Can we therefore think of a way of performing a
frequency analysis (sinusoidal convolution) with a
Gaussian dependancy.

The simplest idea would be to multiply the Gaus-
sian and sinusoidal functions to give a spatially lo-
cated but frequency tuned convolution kernal. This
is an example of the Gabor filter.

Gabor filters have several free parameters to adjust
the scale of the Gaussian and sine components.
They can also be oriented in 2D within the image
plane.

They form a large possible set of image represen-
tations, too large! Which ones should we use for



classification, segmentation etc.

The Gabor filter does not form a complete set of
filters, nor are they orthogonal. Thus it is not
possible to perform an inverse.



Like the Fourier transform, the wavelet transform
has a discrete (and therefore programable) form.

t — nbg

Ymn(t) = w( )

O

Smn = /_OO ¢§rm(t)s(t) dt

— sz ZZ Smn¥mn(t)

Generally ag = 21/v where v = voices/octave.

Any application using the Fourier Transform can be



formulated using wavelets to give more accurately
localised temporal and frequency information.

The existance of an inverse implies that the set of
wavelet transforms for an image region can be used
as a complete representation.



Part 4: Pattern Recognition and Neural Networks

N. A. Thacker.

e Pattern Space Separability.

e Honest Classifiers.

e Neural Network Training Criteria.

e Statistical Testing.

e Akaike Information Criteria.
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All pattern recognition systems make explicit as-
sumptions regarding the expected distribution of
the data.

The minimum assumption we can make is that the
data we have is sampled from the class distribu-
tions with some measurement error.

Construction of a Parzen Classifier using the ex-
pected measurement distribution (G(D;)) for each
data point gives a minimum assumption Bayes clas-
sifier.

ng G;(D;)

P(Cn|Di) —

This can be used to construct a classification ma-
trix for the space which reflects directly the data



separability.

Exclusion of the classified point from the model
gives a cross-validated estimate of performance.

Averaging these two results gives an estimate of
the performance which would result with infinite
statistics with the same prior ratios.



Honest Classifiers.

Any classification system which attempts to esti-
mate conditional probabilities of classification P(C|D)
should produce uniform frequency distributions when
tested on the data it is intended for.

This can be used as the basis for a simple test.

The Honest Classsifier will produce errors 1—P(C|D)
of the time for a forced decision based on P(C|D).

Only honest classifiers are Bayes optimal.

This result has been used to show that Markov
update schemes when used for regional labelling
are not optimal.



Under certain conditions artificial neural networks
can be shown to estimate Bayesian conditional prob-
abilities.

e T he most common optimisation function is the
least squares (Gaussian based) error criteria which
summed over the entire data set for output &
gives.

By = Y (o(In) — tpr)?

where t,,;. is the nth training output and o is the
output from the network for a particular input
I,.

e Provided that we are training with data which
defines a 1-from-K coding of the output (ie
classification) we can partition the error mea-
sure across the K classes according to their rel-
ative conditional probabilities p(Cy|I) so that

Ery = Y Y (o(In) — tyui)? p(Cpln)
n g



expanding the brackets

Ep = Z(OQ(In) - QO(In)Ztnk p(Ckl|In)
n k
+ > t2 p(CilIn))
k

= Y (0°(In) — 20(In) < tp|In > + < to|ln>)

where < a|l > is the expectation operator of a
at I,. By completing the square

Ep = > (o(In)— <tulln >)* 4+ Y var(ty|In)

The last term is purely data dependent so train-
ing minimises the first term which is clearly a
minimum when o(I,) = < tg|ln >.

For a 1-from-K coding of the output and in
the limit of an infinite number of samples <
tglIn > = P(CglIn).



e Another cost function often defined for network
optimisation is the cross-entropy function

Ep = —Ztnklog(o(ln)) + (1—t,x)log(1—o(In))

This is motivated by the assumption that de-
sired outputs t¢,; are independent, binary, ran-
dom variables and the required output network
response represents the conditional probability
that these variables would be one.

The proof of this follows as above with the
introduction of the partion of the classification
state over the one and zero cases eventually

giving
Ey = —) <tg|ln > log(o(In))
n

+ (1— < tg|In >)log(1l — o(Iy))

which when differentiated with respect to the
desired output shows that this function is min-
iImised again when

o(In) = < tg|ln>



Statistical Testing.

A practical problem in understanding network
performance.

The final cost function value after training pro-
vides only a best case estimate of performance.

Increasing the complexity of the network will
always improve the ability of the network to
map the training data.

The ability of the network to provide accurate
outputs for unseen data may reduce. The bias-
variance dilemma.

The common solution to this problem is known
as ‘jack-knifing’ or the ‘leave-one-out’ strategy.



The probabilistic form of the x2 is written as fol-
lows;

N
x> = —2Y log(p(x;,0))
1—=1

The limit of the bias is estimated directly as ;

N N
g = <2) log(p(z;,0)) >—<2) log(p(x;)) >
=1 =1

where p(x;) is the true probability from the correct
model and < X > denotes the expectation opera-
tion.

We can expand this about the true solution 6y as;

N
g = <2) [log(p(zi,0p))+(0—00)dlog(p(z;,00))/06
1 =1

+(6 — 60T H(x:,60)(6 — 00) + h.o.t] >

N
— <23 log(p(z;)) >
1=1
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for a single data point.

The second term has an expectation value of zero
and excluding the higher orders the remaining terms
can be re-written as;

/

N N
g = <2) log(p(z;,00)) —2 > log(p(z;)) >
1=1 1=1

N
+ < > (60— 60)" H(w;,00)(6 — 60) >
1=1

The first term is 2n independent estimates of the
Kullback-Liebler distance which is expected to be
zero. The second term can be re-written using the
matrix trace identity such that

¢ = 2nLgr(p,pg,)

N
+ trace(< Z H(xz;,0p) >< (0 —0p)(0 — HO)T >)
1=1



For a well determined system we would expect the
trace of the product of these matricies to be the
rank of the parameter covariance.

This is simply the number of model parameters k
and leads to the standard form of the AIC measure
used for model selection

AIC = x%2 + k



Summary.

Testing with images is neccesary but not always
sufficient.

Conventional Statistical methods for computing co-
variances can be used to qualify the results of al-
gorithms based upon likelihood statistics.

Error propegation can be used to assess the effects
of noise and guide the design of stable algorithms.

Monte-Carlo techniques can be used when all other
methods fail.

T heoretical requirements of algorithms such as scope,
optimality and completeness can guide the design
of good algorithms.

Pattern classification techniques require represen-
tative test data sets and embody the fundamental
problem of model selection.



