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What are we trying to do?

Why are you doing a PhD?
To extend the body of human knowledge
Improving the robustness of vision techniques is the main
challenge for you, the upcoming generation of vision
researchers
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A statistical preamble

Imagine taking a fair coin and tossing it a number of times. Let
us say that we obtain:

1 3 heads from 10 tosses;
2 30 heads from 100 tosses;
3 300 heads from 1,000 tosses.

Let us now consider which of these is the most surprising.
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A coin toss obeys a binomial distribution

P(t) =

(
N
t

)
pt(1− p)t (1)

with mean is Np and variance Np(1− p). As the coin is fair,
p = 1

2 and the three cases work out as:
1 The expected number of heads (i.e., the mean) is Np = 5.

The sd is
√

Np(1− p) =
√

10× 1
2 ×

1
2 = 1.58. Hence, 3

heads is (5− 3)/1.58 ≈ 1.3 sds from the mean.
2 30 heads is (50− 30)/5 = 4 sds from the mean.
3 300 heads is (500− 300)/15.8 ≈ 13 sds from the mean.
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“Which algorithm is best?”

This is a natural question to ask, and is essentially what
the competitions we often see associated with conferences
ask
But that isn’t what such competitions find: they measure
which algorithm performs best — and there is no attempt
to understand why algorithms’ performances differ
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What questions should we be asking?

Some researchers contend that we should be asking why
does one algorithm out-perform another?
To answer that, we need to explore what characteristics of
the input affect an algorithm’s performance and by how
much — this is what is meant by performance
characterization
It is important that we ask (and answer) this question if we
are to develop vision algorithms that work robustly outside
the research lab
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Assessing performance

There are few occasions where an algorithm’s
performance can be predicted analytically, so most
performance assessment work is performed empirically
The procedure is almost always to run the program under
test against a large set of input data for which the correct
outputs (“ground truth”) are known
The numbers of correct and incorrect results are then
counted
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The result from a single test

Each individual test yields one of four possible results:
True positive: when a test that should yield a correct result

does so
True negative: when a test that should yield an incorrect result

does so
False negative: when a test that should yield a correct result

actually yields an incorrect one
False positive: when a test that should yield an incorrect result

actually yields a correct one
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But things aren’t always clear-cut

(a) Original
image

(b) Corre-
sponding
template

(c) Ambiguity
at edge of
template
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Why can’t we just compare TP etc. rates?

Most algorithms have tuning parameters
Results obtained on one dataset don’t guarantee similar
figures from another (⇒ the test set was too small or not
representative)
Results obtained on simulated data don’t necessarily
match those from real data (⇒ the simulated data are poor)
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Technology evaluation

This involves identifying and testing any underlying
assumptions of an algorithm — e.g., Canny’s edge
detector assumes that noise is additive
The tuning parameters of the algorithm are also listed
(e.g., Gaussian kernel width, thresholds) and the
consequence of varying them assessed
It is best done using simulated data, as it provides the
only way that all characteristics of the data can be known
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Scenario or application evaluation

This assesses the effectiveness of the technique for a
particular task, such as locating line-segments in fMRI
datasets
This must, of course, be performed using real data
If technology evaluation is performed well, the researcher
will have some idea of how well the algorithm is likely to
perform in an application simply by estimating the
characteristics of the fMRI data — how much and what
type of noise, and so on



Introduction Assessing performance Comparing algorithms Other issues

Assessing a single algorithm

As most algorithms can be tuned to the test data, it is
common to plot sensitivity (TP rate) against specificity
(1− FP rate) or similar
In such a curve, the area under the curve gives a measure
of overall accuracy and can be used as the basis of a
comparison — though there are better ways
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Receiver operating characteristic (ROC) curves
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Which algorithm is better?
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Confusion matrices

For classification-type problems, it is common to tabulate
the class returned by an algorithm against the correct value
When there are two classes, success and failure, this
reduces to

predicted negative predicted positive
actual negative TN FP
actual positive FN TP
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actual predicted
0 1 2 3 4 5 6 7 8 9

0 20 0 0 6 0 0 1 0 10 0
1 0 25 0 0 0 0 0 6 0 0
2 0 0 31 0 0 0 0 0 0 0
3 0 0 0 21 0 0 0 0 10 0
4 0 0 0 0 31 0 0 0 0 0
5 0 0 0 0 0 22 0 0 9 0
6 1 0 0 1 0 2 23 0 3 1
7 0 8 0 0 0 0 0 23 0 0
8 4 0 1 3 2 1 3 0 13 4
9 0 0 0 2 0 0 0 3 1 27
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Comparing algorithms

The only viable way to compare algorithms is to run them
on the same data with a specific set of tuning parameter
values
When this is done, an appropriate statistical test can be
employed which takes into account not only the number of
false positives etc. but also the number of tests
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McNemar’s Test

Alg A failed Alg A succeeded
Alg B failed Nff Nsf

Alg B succeeded Nfs Nss

McNemar’s test is:

χ2 =
(|Nsf − Nfs| − 1)2

(Nsf + Nfs)

This is a form of chi-square test for matched paired data.
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Why McNemar’s test is so useful

When the two algorithms being tested give similar
performances, χ2 ≈ 0
If we assessing whether two algorithms differ, a two-tailed
test should be used; and if we are determining whether
one algorithm is better than another, a one-tailed test
should be used
If both Nsf and Nfs are large, then Algorithm A tends to
succeed where Algorithm B fails and vice versa — so an
algorithm that combines both is likely to be better than
either in isolation



Introduction Assessing performance Comparing algorithms Other issues

Towards principled vision systems design

McNemar’s test tells us not only how to do it but also
when it is appropriate to do it on the basis of technology
evaluation — in other words, technology evaluation needs
to be an inherent part of the algorithm design process
It is ironic that McNemar’s test works principally by
considering where algorithms fail — yet almost all the
testing we see in computer vision concentrates on where
algorithms succeed
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Determining robustness to noise

Take a typical input image and generate (say) 100 versions
with added Gaussian-distributed noise of zero mean and
known standard deviation, then feed to the algorithm under
test
If the algorithm produces a class label, that label should
not change
If the algorithm produces a measurement, plotting a
histogram of the error in that measurement will show how
the algorithm is affected by noise. If the input noise
distribution is Gaussian, the distribution of the
measurement error should also be Gaussian and the sd of
the errors gives an idea of how well the algorithm
withstands noise
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Vision systems ‘in the wild’

Most successful vision systems work in controlled
environments, though thankfully there is an increasing
trend towards working in uncontrolled ones
There is a host of problems you won’t have thought of,
ranging from a lack of handy main power to illumination
changes due to the time of day and clouds
Don’t expect lab-measured performance to be achieved in
the field!
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Concluding remarks

Most of the vision community still does not take
assessment seriously
By performing assessment and comparison intelligently as
part of the algorithm development process you can
improve algorithms as you develop them
This gives us a handle on being able to design vision
systems
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